Coupling of Gaussian beam and finite difference solvers for semiclassical Schrödinger equations

نویسندگان

  • Emil Kieri
  • Gunilla Kreiss
  • Olof Runborg
چکیده

In the semiclassical regime, solutions to the time-dependent Schrödinger equation are highly oscillatory. The number of grid points required for resolving the oscillations may become very large even for simple model problems, making solution on a grid, e.g., using a finite difference method, intractable. Asymptotic methods like Gaussian beams can resolve the oscillations with little effort and yield good approximations when the molecules are heavy and the potential is smooth. However, when the potential has variations on a small length-scale, quantum phenomena become important. Then asymptotic methods are less accurate. The two classes of methods perform well in different parameter regimes. This opens for hybrid methods, using Gaussian beams where we can and finite differences where we have to. We propose a new method for treating the coupling between the finite difference method and Gaussian beams. The new method reduces the needed amount of overlap regions considerably compared to previous methods, which improves the efficiency. We apply the method to scattering problems in one and two dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Eulerian and High Order Gaussian Beam Methods for the Schrödinger Equation in the Semiclassical Regime

A novel Eulerian Gaussian beam method was developed in [8] to compute the Schrödinger equation efficiently in the semiclassical regime. In this paper, we introduce an efficient semi-Eulerian implementation of this method. The new algorithm inherits the essence of the Eulerian Gaussian beam method where the Hessian is computed through the derivatives of the complexified level set functions inste...

متن کامل

Gaussian Beam Methods for the Schrödinger Equation in the Semi-classical Regime: Lagrangian and Eulerian Formulations

The solution to the Schrödinger equation is highly oscillatory when the rescaled Planck constant ε is small in the semiclassical regime. A direct numerical simulation requires the mesh size to be O(ε). The Gaussian beam method is an efficient way to solve the high frequency wave equations asymptotically, outperforming the geometric optics method in that the Gaussian beam method is accurate even...

متن کامل

Mathematical and computational methods for semiclassical Schrödinger equations

We consider time-dependent (linear and nonlinear) Schrödinger equations in a semiclassical scaling. These equations form a canonical class of (nonlinear) dispersive models whose solutions exhibit high frequency oscillations. The design of efficient numerical methods which produce an accurate approximation of the solutions, or, at least, of the associated physical observables, is a formidable ma...

متن کامل

Stability of Spectral Eigenspaces in Nonlinear Schrödinger Equations

We consider the time-dependent non linear Schrödinger equations with a double well potential in dimensions d = 1 and d = 2. We prove, in the semiclassical limit, that the finite dimensional eigenspace associated to the lowest two eigenvalues of the linear operator is almost invariant for any time.

متن کامل

Numerical Analysis of Schrödinger Equations in the Highly Oscillatory Regime

Linear (and nonlinear) Schrödinger equations in the semiclassical (small dispersion) regime pose a significant challenge to numerical analysis and scientific computing, mainly due to the fact that they propagate high frequency spatial and temporal oscillations. At first we prove using Wigner measure techniques that finite difference discretisations in general require a disproportionate amount o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013